Komlósi, S., Rapcsák, T. and S. Schaible (Eds.), Generalized Convexity, Proceedings of the “Fourth International Workshop on Generalized Convexity”, held at the Janus Pannonius University, Pécs (Hungary), August 31 – September 2, 1992, Lecture Notes in Economics and Mathematical Systems, vol. 405, Springer-Verlag, Berlin, 1994.
Table of Contents
- Bector C.R., Chandra S., Ghupta S. and S.K. Suneja, Univex sets, functions and univex nonlinear programming, pp.3-18.
- Blaga L. and J. Kolumbán, Optimization on closely convex sets, pp.19-34.
- Cigola M., A note on ordinal concavity, pp.35-39.
- Driessen T., Generalized concavity in cooperative game theory: characterizations in terms of the core, pp.40-52.
- Forgó F., On the existence of Nash-equilibrium in n-person generalized concave games, pp.53-61.
- Frenk J.B.G., Gromicho J., Plastria F. and S. Zhang, A deep cut ellipsoid algorithm and quasiconvex programming, pp.62-76.
- Hartwig H., Quasiconvexity and related properties in the calculus of variations, pp.77-84.
- Mayor-Gallego J.A., Rufian-Lizana A. and P. Ruiz-Canales, Ray-quasiconvex and f-quasiconvex functions, pp.85-90.
- Rapcsák T., Geodesic convexity on Rn, pp.91-103.
- Szilágyi P., A class of differentiable generalized convex functions, pp.104-115.
- Tosques M., Equivalence between generalized gradients and subdifferentials (lower semigradients) for a suitable class of lower semicontinuous functions, pp.116-133.
- Bomze I.H. and G. Danninger, Generalizing convexity for second order optimality conditions, pp.137-144.
- Dien P.H., Mastroeni G., Pappalardo M. and P.H. Quang, Regularity conditions for constrained extremum problems via image space approach: the linear case, pp.145-152.
- Frenk J.G.B., Dias D.M.L. and J. Gromicho, Duality theory for convex/quasiconvex functions and its application to optimization, pp.153-170.
- Giorgi G. and A. Guerraggio, First order generalized optimality conditions for programming problems with a set constraint, pp.171-185.
- Glover B.M. and V. Jeyakumar, Abstract nonsmooth nonconvex programming, pp.186-210.
- Mititelu S., A survey on optimality and duality in nonsmooth programming, pp.211-225.
- Schaible S., Generalized monotonicity – a survey, pp.229-249.
- Castagnoli E. and P. Mazzoleni, Orderings, generalized convexity and monotonicity, pp.250-262.
- Komlósi S., Generalized monotonicity in non-smooth analysis, pp.263-275.
- Pini R. and S. Schaible, Some invariance properties of generalized monotonicity, pp.276-277.
- Bykadorov I.A., On quasiconvexity in fractional programming, pp.281-293.
- Cambini R., A class of non-linear programs: theoretical and algorithmical resiults, pp.294-310.
- Csébfalvi A. and G. Csébfalvi, Post-buckling analysis of frames by a hybrid path-following method, pp.311-321.
- Stancu-Minasian I.M. and S. Tigan, Fractional programming under uncertainty, pp.322-333.
- Cambini A. and L. Martein, Generalized concavity and optimality conditions in vector and scalar optimization, pp.337-357.
- Bector C.R., Bector M.K., Gill A. and C. Singh, Duality for vector valued B-invex programming, pp.358-373.
- Fülöp J., A cutting plane algorithm for linear optimization over the efficient set, pp.374-385.
- Ishii H., Multiobjective scheduling problems, pp.386-391.
- Marchi A., On the relationships between bicriteria problems and non-linear programming, pp.392-400.