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Preface

Variational analysis is a well-recognized area of mathematics with a great
many applications to optimization, control, equilibria, stability, machine learn-
ing, statistics, as well as to practical models of science and technology. The
underlying feature of variational analysis is the broad usage of generalized dif-
ferentiation, which allows us to deal with nonsmooth functions, sets with non-
smooth boundaries, and set-valued mappings. Such objects naturally and fre-
quently appear not only in problems with nonsmooth initial data but mainly
due to employing variational/extremal principles and techniques.

First-order variational analysis is based on (first-order) generalized deriva-
tives and subgradients of nondifferentiable functions and associated construc-
tions for sets and mappings. Starting with convex analysis, a lot has been
done in first-order variational theory and abundant applications; see, e.g., the
books [15, 23, 31, 46, 48, 50, 58, 76, 77, 87, 89, 101, 110, 114, 158, 162, 163,
166, 169, 177, 188, 221, 227, 228, 230, 233, 234, 268, 281, 287, 303, 313, 317,
319, 326, 330, 338, 341, 350] with the extensive bibliographies therein.

The situation is different for second-order variational analysis. Despite the
growing number of strong theoretical developments and a variety of impressive
applications documented in numerous journal publications, we present now
for the reader’s consideration the first book entirely devoted to this subject.
There exist several second-order generalized differential constructions, which
are successfully used in second-order variational analysis and its applications.
The major ones are reflected in the book, while our main attention is paid
to the second-order subdifferentials (known also as generalized Hessians) of
extended-real-valued functions introduced by the author in the early 1990s
and then strongly developed and applied by many researchers over the years.
The reader can find more discussions, historical remarks, and references in the
commentary sections of the book.

The book provides a detailed study of second-order subdifferentials, their
calculus and efficient evaluations/calculations for major classes of functions
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encountered in problems of variational analysis, optimization, etc. in finite-
dimensional and infinite-dimensional spaces. These results and advanced vari-
ational techniques turn out to be instrumental in characterizing fundamen-
tal notions of variational stability of solutions for diverse classes of problems
in optimization and optimal control, the study of variational convexity of
extended-real-valued functions and their specifications, and variational suffi-
ciency in optimization among other topics considered in the book. We also
include in the book quite recent applications of the second-order subdiffer-
entials, married to the achieved characterizations of variational stability and
related concepts, to the design and justification of second-order numerical
algorithms for solving various classes of optimization problems, nonsmooth
equations, and subgradient inclusions. The developed algorithms are numeri-
cally implemented to solve some practical models taken from machine learning,
statistics, imaging processes, and other applied areas.

The book consists of nine interrelated chapters. To make it self-contained,
we include in Chapter 1 some preliminaries from first-order variational analy-
sis and generalized differentiation with detailed references. Then this chapter
presents, with full proofs, major constructions and properties of second-order
generalized differentiation and relationships between them, as well as the fun-
damental notions of monotonicity, prox-regularity, and Moreau envelopes.

Chapter 2 is devoted to comprehensive calculus rules for second-order sub-
differentials and their partial counterparts in finite and infinite dimensions.
The next Chapter 3 contains explicit evaluations and precise calculations of
second-order subdifferentials for some major classes of extended-real-valued
functions and constraint systems. The results of these two chapters play a
highly important role in the subsequent developments and applications.

In Chapter 4, we start the second-order study of variational stability of
local optimal solutions and first-order variational systems governed by sub-
gradient inclusions, variational inequalities, and generalized equations. Our
main attention here is paid to robust Lipschitzian stability of solution map-
pings for parametric variational systems and tilt stability of local minimizers
in general optimization frameworks as well as infinite-dimensional and finite-
dimensional settings of nonlinear programming. This chapter also contains
a detailed study of related notions of metric regularity and subregularity for
subgradient mappings together with their strong counterparts.

Chapter 5 continues the second-order study of variational stability while
concentrating now on the notions of full stability for local optimal solutions to
optimization problems in infinite-dimensional and finite-dimensional spaces.
We designate here the two different notions of variational stability: Lips-
chitzian full stability and Hölderian full stability. Complete characterizations
of these notions are obtained via second-order growth and second-order subd-
ifferential conditions in general frameworks of extended-real-valued and con-
strained optimization with explicit specifications of the obtained results for
particular classes of constrained optimization problems with polyhedral and
nonpolyhedral structures. Furthermore, close relationships between full stabil-
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ity of local minimizers and strong stability of the corresponding Karush–Kuhn–
Tucker systems are established under certain nondegeneracy conditions.

Chapter 6 is also devoted to variational full stability but of different objects
in comparison with the previous chapter, namely, for solution mappings as-
sociated with parametric variational systems (PVSs) and their specifications.
Nevertheless, we keep the same names of Lipschitzian and Hölderian full sta-
bility for PVSs as for local minimizers in Chapter 5, since the obtained charac-
terizations reveal close relationships between these notions under appropriate
reductions. A crucial role in the study of full stability for PVSs is played by lo-
cal maximal monotonicity and its strong counterpart for set-valued mappings
in Hilbert spaces that are of their undoubted own interest. The established
coderivative characterizations of these notions provide basic ingredients for
deriving second-order characterizations of full stability for PVSs and their
specifications in both finite-dimensional and infinite-dimensional settings.

Chapter 7 addresses optimal control of elliptic PDE systems. The main
goal here is to study variational full stability of optimal solutions under var-
ious perturbations of problem data. The developed approaches to the study
and characterizations of both Lipschitzian and Hölderian full stability for the
elliptic PDEs are based on their reductions to problems of polyhedric program-
ming in Hilbert spaces with the usage of tools of second-order generalized
differentiation married to core PDE theory. It is revealed in this way that
both full stability notions are equivalent to each other with admitting explicit
second-order characterizations. Unfortunately, the size of this book does not
allow us to include striking applications of second-order variational analysis
to optimal control of new classes of dynamical systems governed by sweep-
ing processes. We have briefly discussed these topics in the text with giving
appropriate references while planning to write a separate book on controlled
sweeping processes and related issues in the near future.

Chapter 8 concerns novel concepts of variational convexity of extended-
real-valued functions and variational sufficiency in optimization. To study
variational convexity and its strong counterpart for functions on Banach
spaces, we first revisit local maximal monotonicity and strong maximal mono-
tonicity but now in general Banach spaces that exhibit some significant fea-
tures in comparison with the Hilbert space versions of Chapter 6. The main
result on local maximal monotonicity obtained here is the resolvent character-
ization, which can be viewed as a local version of the celebrated Minty theorem
while being new even in finite dimensions. Using these developments allows us
to establish close relationships and equivalences between variational convex-
ity of functions and local convexity of their Moreau envelopes as well as local
maximal monotonicity of the associated subgradient mappings. Similar results
are obtained for strong variational convexity, which happens to be related to
tilt stability of local minimizers under appropriate geometric assumptions on
Banach spaces. The achieved results on variational and strong variational con-
vexity induce the corresponding developments on variational sufficiency and
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strong variational sufficiency for local optimality in problems of composite
optimization with explicit specifications in nonlinear programming.

The final Chapter 9 is, to some extent, the quintessence of the book,
where theoretical developments and calculations given in the previous chap-
ters are applied to second-order numerical variational analysis containing
the design, justification, and implementation of numerical algorithms to
solve optimization-related problems by using second-order subdifferentials. We
present several generalized Newtonian algorithms exhibiting local and global
convergence with linear, superlinear, and quadratic convergence rates, and
then present further applications to solving practical models.

There are extensive exercises and commentaries at the end of each chap-
ter. Exercises play a significant role in the book. On one hand, they allow
the reader to delve deeply into the exciting area of second-order variational
analysis and confirm his/her strong understanding of the presented material.
On the other hand, some exercises contain results that are not proved while
used in the book, with hints and references to the original sources.

For the reader’s convenience, we provide the list of statements presented
in the book, glossary of notation and acronyms, and detailed subject index,
which would allow the reader to quickly and easily find the item of interest.

The author hopes that the book will be useful for diverse groups of read-
ers. First of all, it addresses senior and young researchers in the areas of non-
linear, variational and convex analysis, optimization and equilibria, systems
control, and their numerous applications to engineering, economics, mechan-
ics, machine learning, statistics, and other branches of applied sciences and
technology. Graduate students in all these areas, as well as in real, functional
and applied analysis, ordinary and partial differential equations, numerical
methods, etc. will gain a great deal from studying this book.

Parts of the book have been used by the author in teaching graduate classes
at Wayne State University and other schools and research centers worldwide
which he visited during the recent years. Very useful feedback coming from
students and all interested listeners is incorporated in the text and exercises.

Acknowledgments. First of all, I thank my longtime friend and teacher
Terry Rockafellar for his great ideas and results on variational analysis
and optimization, which inspired many developments presented in the book.
Over the years, I have strongly benefited from the discussions and collab-
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Ahookhosh, Fran Aragón-Artacho, Heinz Bauschke, Matúš Benko, Jérôme
Bolte, Jon Borwein, Radu Boţ, Jim Burke, Lola Cánovas, Nguyen Chieu,
Giovanni Colombo, Patrick Combettes, Rafael Correa, Stephan Dempe, Dima
Drusvyatskiy, Marius Durea, Marián Fabian, Helmut Gfrerer, René Henrion,
Jean-Baptiste Hiriart-Urruty, Abderrahim Jourani, Christian Kanzow, Pham
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Fu Ng, Jiři Outrata, Michael Overton, Juan Parra, Pedro Peréz-Aros, Boris



Preface xi

Polyak, Nguyen Thanh Qui, Hector Ramírez, Steve Robinson, Alex Shapiro,
Radu Strugariu, Defeng Sun, Michel Théra, Lionel Thibault, Christiane Tam-
mer, Amos Uderzo, Shawn Wang, Henry Wolkowicz, Xiaoqi Yang, Jane Ye,
Nguyen Dong Yen, Darek Zagrodny, Constantin Zălinescu, Alex Zaslavski,
Alain Zemkoho, Jin Zhang, and Xi Yin Zheng. I’m so grateful to all of them.

Many thanks go to those of my former and current students with whom I
have had a pleasure to collaborate on some topics and results that are included
and/or mentioned in the book: Truong Bao, Tan Cao, Nguyen Hoang, Nguyen
Van Hang, Vu Khoa, Alex Kruger, Ashkan Mohammadi, Nguyen Mau Nam,
Tran Nghia, Dao Nguyen, Trang Nguyen, Wei Ouyang, Dat Pham, Hung
Phan, Vo Phat, Ebrahim Sarabi, Dat Tran, and Bingwu Wang.

Great help with proofreading came from Anuj Bajaj, Vu Khoa, Viet Le,
Anh Nguyen, Oanh Nguyen, Trang Nguyen (who made all the figures), Thi
Phung, Vo Phat, and Dat Tran.

My special thanks go to Elizabeth Loew, Executive Editor in Mathematics
of Springer New York, who has always been very helpful and patient. Supports
from the National Science Foundation and the Air Force Office of Scientific
Research during the work on this project are highly appreciated. I am also
very grateful to three anonymous referees for their approval of the book and
useful comments, which allowed me to improve the original presentation.

Above all, I thank Margaret, my wife and the love of my life, for being
with me and supporting me enormously.

Ann Arbor, MI, USA Boris S. Mordukhovich
December 2023



Contents

1 Basic Concepts of Second-Order Analysis . . . . . . . . . . . . . . . . . . 1
1.1 Preliminaries from First-Order Variational Analysis . . . . . . . . . . 2

1.1.1 Generalized Normals to Sets and Geometric Results . . . 2
1.1.2 Generalized Differentiation of Set-Valued Mappings . . . . 13
1.1.3 Variational and Subdifferential Properties of

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2 Second-Order Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2.1 Definitions and Elementary Properties . . . . . . . . . . . . . . . 36
1.2.2 Partial Second-Order Subdifferentials . . . . . . . . . . . . . . . . 39

1.3 Prox-Regularity in Variational Analysis . . . . . . . . . . . . . . . . . . . . 43
1.3.1 Prox-Regular Functions and Sets . . . . . . . . . . . . . . . . . . . . 43
1.3.2 Prox-Regularity and Monotonicity . . . . . . . . . . . . . . . . . . . 47
1.3.3 Moreau Envelopes and Proximal Mappings . . . . . . . . . . . 52

1.4 Subgradient Graphical Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.4.1 Definitions and Some Properties . . . . . . . . . . . . . . . . . . . . . 56
1.4.2 Second-Order Relations for C1,1 Functions . . . . . . . . . . . . 58
1.4.3 Subgradient Graphical Derivatives and

Prox-Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.5 Second Subderivatives and Related Constructions . . . . . . . . . . . 67

1.5.1 Second Subderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.5.2 Second Subderivatives Under Prox-Regularity . . . . . . . . . 71

1.6 Exercises for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
1.7 Commentaries to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2 Second-Order Subdifferential Calculus . . . . . . . . . . . . . . . . . . . . . 91
2.1 Second-Order Chain Rules in Banach Spaces . . . . . . . . . . . . . . . . 91

2.1.1 Chain Rules for Full Second-Order Subdifferentials . . . . 92

xiii



xiv Contents

2.1.2 Chain Rules for Partial Second-Order
Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.2 Second-Order Calculus in Asplund Spaces . . . . . . . . . . . . . . . . . . 104
2.2.1 Calculus Rules for Full Second-Order

Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.2.2 Calculus Rules for Partial Second-Order

Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.3 Second-Order Chain Rules in Finite Dimensions . . . . . . . . . . . . . 117

2.3.1 Finite-Dimensional Methods of Second-Order
Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

2.3.2 Chain Rules for Fully Amenable Compositions . . . . . . . . 126
2.4 Exercises for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
2.5 Commentaries to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3 Evaluating Second-Order Subdifferentials . . . . . . . . . . . . . . . . . . 139
3.1 Second-Order Calculations for Polyhedral Systems . . . . . . . . . . . 139

3.1.1 Polyhedral Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.1.2 Regular Coderivatives of Normal Cone Mappings . . . . . . 141
3.1.3 Limiting Coderivatives of Normal Cone Mappings . . . . . 144

3.2 Second-Order Calculations for Classes of Convex Piecewise
Linear and Related Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.2.1 Piecewise Linear Functions via First-Order Study . . . . . 153
3.2.2 Calculating Regular Normals to Subdifferential

Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.2.3 Second-Order Calculations for CPWL Functions . . . . . . . 165
3.2.4 Second-Order Calculations for Norms and Penalties . . . . 178

3.3 Second-Order Evaluations for Constraint Systems . . . . . . . . . . . 188
3.3.1 Nonlinear Systems under LICQ and Revisiting

Polyhedrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
3.3.2 Perturbed Constraint Systems under Calmness . . . . . . . . 194
3.3.3 Nonlinear Inequality Systems via Calmness

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
3.3.4 Nonlinear Constraint Systems without Calmness . . . . . . 209

3.4 Exercises for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3.5 Commentaries to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4 Lipschitzian Stability via Second-Order Subdifferentials . . . . 223
4.1 Robust Lipschitzian Behavior of Solution Mappings for

Parametric Variational Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.1.1 Robust Lipschitzian Stability in Variational

Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.1.2 Robust Lipschitzian Stability in Generalized

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
4.2 Tilt Stability of Local Minimizers and Metric (Sub)Regularity

of Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238



Contents xv

4.2.1 Tilt-Stable Local Minimizers . . . . . . . . . . . . . . . . . . . . . . . . 238
4.2.2 Strong Metric Regularity of Subgradient Mappings . . . . 240
4.2.3 Metric Subregularity and Regularity of

Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
4.2.4 Second-Order Characterizations of Tilt Stability . . . . . . . 258

4.3 Tilt-Stable Minimizers in Nonlinear Programming . . . . . . . . . . . 276
4.3.1 Nonlinear Programs in Infinite Dimensions . . . . . . . . . . . 277
4.3.2 Qualification Conditions in Nonlinear

Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
4.3.3 Second-Order Generalized Derivatives for NLPs . . . . . . . 299
4.3.4 Point-Based Sufficient Conditions for Tilt

Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.3.5 Point-Based Characterizations of Tilt Stability

in NLPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
4.3.6 Discussions and Examples for Tilt Stability in NLPs . . . 319

4.4 Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
4.5 Commentaries to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

5 Full Stability of Local Minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . 335
5.1 Full Stability in General Optimization Problems . . . . . . . . . . . . . 335

5.1.1 Two Types of Full Stability for Local Minimizers . . . . . . 336
5.1.2 Characterizing Full Stability via

Second-Order Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
5.1.3 Full Stability via Second-Order Subdifferentials . . . . . . . 350
5.1.4 Quantitative Characterizations of Full Stability . . . . . . . 356

5.2 Stability Notions in Constrained Optimization . . . . . . . . . . . . . . 364
5.2.1 Relations to Strong Stability and Strong Regularity . . . . 365
5.2.2 Second-Order Stability Characterizations . . . . . . . . . . . . . 368
5.2.3 Characterizations of Stability for

Composite Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
5.3 Full Stability Without Nondegeneracy . . . . . . . . . . . . . . . . . . . . . . 375

5.3.1 Full Stability in Nonlinear Programming . . . . . . . . . . . . . 376
5.3.2 Full Stability in Polyhedric Programming . . . . . . . . . . . . . 381

5.4 Stability Under Polyhedrality and Nondegeneracy . . . . . . . . . . . 385
5.4.1 Mathematical Programs with Polyhedral Constraints . . 386
5.4.2 Extended Nonlinear Programming . . . . . . . . . . . . . . . . . . . 393
5.4.3 Full Stability in Minimax Optimization . . . . . . . . . . . . . . 397

5.5 Stability Issues Without Polyhedrality . . . . . . . . . . . . . . . . . . . . . 405
5.5.1 Qualification and Nondegeneracy Conditions in

Second-Order Cone Programming . . . . . . . . . . . . . . . . . . . 406
5.5.2 Full Stability in Second-Order Cone Programming . . . . . 416
5.5.3 Stability Characterizations for Semidefinite Programs . . 426

5.6 Exercises for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
5.7 Commentaries to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437



xvi Contents

6 Full Stability in Variational Systems . . . . . . . . . . . . . . . . . . . . . . . 439
6.1 Full Stability and Local Monotonicity in PVSs . . . . . . . . . . . . . . 439

6.1.1 Basic Notions and Standing Assumptions . . . . . . . . . . . . . 440
6.1.2 Local Maximal Monotonicity in Hilbert Spaces . . . . . . . . 442
6.1.3 Point-based Characterizations of Local Monotonicity . . . 452

6.2 Full Stability of PVSs under Partial Differentiability . . . . . . . . . 461
6.2.1 Hölderian Full Stability in Two-Parametric PVSs . . . . . . 462
6.2.2 Lipschitzian Full Stability of Two-Parametric PVSs . . . . 472
6.2.3 Characterizing Full Stability in General PVSs . . . . . . . . . 476

6.3 Full Stability in Nonsmooth PVSs . . . . . . . . . . . . . . . . . . . . . . . . . 479
6.3.1 Calculating the Threshold of Prox-Regularity . . . . . . . . . 479
6.3.2 Hölder and Lipschitz Properties of Generalized

Projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
6.3.3 Full Stability in PVSs under Strong Monotonicity . . . . . 488

6.4 Lipschitzian Full Stability in Parametric Variational
Inequalities and Variational Conditions . . . . . . . . . . . . . . . . . . . . . 494
6.4.1 Full Stability in Parametric Variational Inequalities . . . . 494
6.4.2 Full Stability in Parametric Variational Conditions . . . . 499

6.5 Exercises for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
6.6 Commentaries to Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

7 Full Stability in PDE Optimal Control . . . . . . . . . . . . . . . . . . . . . 509
7.1 Full Stability in Constrained Elliptic PDEs . . . . . . . . . . . . . . . . . 509

7.1.1 Elliptic Problems with General Control Constraints . . . . 509
7.1.2 Polyhedric Pointwise Control Constraints . . . . . . . . . . . . . 513

7.2 Elliptic PDEs with Unperturbed Control Constraints . . . . . . . . 515
7.2.1 Problem Formulation and Well-Posedness . . . . . . . . . . . . 515
7.2.2 Equivalence and Characterizations of Full Stability . . . . 518

7.3 Elliptic Systems with Perturbed Control Regions . . . . . . . . . . . . 521
7.3.1 Neighborhood Criteria for Elliptic Full Stability . . . . . . . 522
7.3.2 Point-Based Characterizations of Elliptic

Full Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
7.4 Exercises for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
7.5 Commentaries to Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

8 Variational Convexity in Optimization . . . . . . . . . . . . . . . . . . . . . 539
8.1 Local Maximal Monotonicity in Banach Spaces . . . . . . . . . . . . . . 539

8.1.1 Basic Definitions and Preliminaries . . . . . . . . . . . . . . . . . . 539
8.1.2 Equivalence and Resolvent Characterizations of Local

Maximal Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
8.1.3 Preservation of Local Maximal Monotonicity . . . . . . . . . . 551

8.2 Variational and Strong Variational Convexity of Functions
and Their Subgradient Descriptions . . . . . . . . . . . . . . . . . . . . . . . . 554
8.2.1 Variational and Strong Variational Convexity . . . . . . . . . 554
8.2.2 Subgradient Descriptions of σ-Variational Convexity . . . 559



Contents xvii

8.3 Variational Convexity via Local Subdifferential Monotonicity
and Convexity of Moreau Envelopes . . . . . . . . . . . . . . . . . . . . . . . 565
8.3.1 Characterizations of Variational Convexity . . . . . . . . . . . 565
8.3.2 Characterizations of Strong Variational Convexity . . . . . 576

8.4 Variational Sufficiency in Optimization . . . . . . . . . . . . . . . . . . . . . 585
8.4.1 Variational Sufficiency in Composite Problems . . . . . . . . 586
8.4.2 Variational Sufficiency in Nonlinear Programming . . . . . 592

8.5 Exercises for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
8.6 Commentaries to Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

9 Second-Order Numerical Variational Analysis . . . . . . . . . . . . . 605
9.1 Local Newtonian Methods for Subgradient Inclusions . . . . . . . . 606

9.1.1 Solvability of Generalized Newton Systems . . . . . . . . . . . 607
9.1.2 Semismooth∗ Sets and Set-Valued Mappings . . . . . . . . . . 614
9.1.3 Dual Local Newtonian Algorithm to Solve Gradient

Equations for C1,1 Functions . . . . . . . . . . . . . . . . . . . . . . . . 622
9.1.4 Dual Local Newtonian Algorithm for Prox-Regular

Subgradient Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
9.1.5 Dual Local Newtonian Algorithm for Nonsmooth

Optimization of Structured Sums . . . . . . . . . . . . . . . . . . . . 640
9.1.6 Applications to Regularized Least Square Problems . . . . 648

9.2 Globally Convergent Coderivative-Based Generalized Newton
Methods for Nonsmooth Optimization . . . . . . . . . . . . . . . . . . . . . 654
9.2.1 Generalized Damped Newton Method for C1,1

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
9.2.2 Coderivative-Based Regularized Newton Method . . . . . . 660

9.3 Coderivative-Based Generalized Newton Methods for Convex
Composite Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

9.4 Applications of the Coderivative-Based Newtonian
Algorithms and Numerical Experiments . . . . . . . . . . . . . . . . . . . . 673
9.4.1 Testing C1,1 Optimization Problems . . . . . . . . . . . . . . . . . 673
9.4.2 Solving Lasso Problems by Using GDNM and GRNM . . 676
9.4.3 Box-Constrained Quadratic Programming . . . . . . . . . . . . 680

9.5 Coderivative-Based Semi-Newton Method in Nonsmooth
Difference Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
9.5.1 Design and Justification of the Semi-Newton

Algorithm in Nonconvex Difference Programming . . . . . 684
9.5.2 Convergence Rates Under the Kurdyka–Łojasiewicz

Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
9.6 RCSN Applications to Structured Constrained Optimization

and Practical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
9.6.1 Minimization of Structured Sums . . . . . . . . . . . . . . . . . . . . 701
9.6.2 Nonconvex Optimization with Geometric Constraints . . 704

9.7 Exercises for Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
9.8 Commentaries on Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713



xviii Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

List of Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

List of Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767

Glossary of Notation and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775




